NarendZORCE Zorce Editor-in-Chief
Joined: 04 Apr 2005 Posts: 3137 Location: In Zorce, usually after the contents page
|
Posted: Tue Aug 30, 2005 11:56 am Post subject: The Quasiturbine Engine |
|
|
http://www.quasiturbine.com/
In the Quasiturbine engine, the four strokes of a typical cycle de Beau de Rochas (Otto) cycle are arranged sequentially around a near oval, unlike the reciprocating motion of a piston engine. In the basic single rotor Quasiturbine engine, an oval housing surrounds a four-sided articulated rotor which turns and moves within the housing. The sides of the rotor seal against the sides of the housing, and the corners of the rotor seal against the inner periphery, dividing it into four chambers.
Quasiturbine
combustion cycle
Intake (aqua),
Compression (fuchsia),
Combustion (red),
Exhaust (black).
A spark plug is located
at the top (green)
As the rotor turns, its motion and the shape of the housing cause each side of the housing to get closer and farther from the rotor, compressing and expanding the chambers similarly to the "strokes" in a reciprocating engine. However, whereas a four stroke piston engine produces one combustion stroke per cylinder for every two revolutions, the chambers of the Quasiturbine rotor generate height combustion "strokes" per two rotor revolutions; this is eight times more than a four-strokes piston engine.
Because the Quasiturbine has no crankshaft, the internal volume variations do not follow the usual sinusoidal engine movements, which provide very different characteristics from the piston or the Wankel engine. Contrary to the Wankel engine where the crankshaft moves the rotary piston face inward and outward, each Quasiturbine rotor face rocks back and forth in reference to the engine radius, but stays at a constant distance from the engine center at all time, producing only pure tangential rotational forces.
The four strokes piston has such a long dead time, its average torque is about 1/8 of the peak torque, which dictate the robustness of the piston construction. Since the Quasiturbine has not dead time, average torque is only 30% lower than the peak torque, and for this reason, the relative robustness of the Quasiturbine need be only 1/5 of that of the piston, allowing for an additional engine weight saving... |
|